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Using a real-space renormalization-group approximation, we study the anisotropic quantum Heisenberg
model on hierarchical lattices, with interactions following aperiodic sequences. Three different sequences are
considered, with relevant and irrelevant fluctuations, according to the Luck-Harris criterion. The phase diagram
is discussed as a function of the anisotropy parameter � �such that �=0 and 1 correspond to the isotropic
Heisenberg and Ising models, respectively�. We find three different types of phase diagrams, with general
characteristics: the isotropic Heisenberg plane is always an invariant one �as expected by symmetry arguments�
and the critical behavior of the anisotropic Heisenberg model is governed by fixed points on the Ising-model
plane. Our results for the isotropic Heisenberg model show that the relevance or irrelevance of aperiodic
models, when compared to their uniform counterpart, is as predicted by the Harris-Luck criterion. A low-
temperature renormalization-group procedure was applied to the classical isotropic Heisenberg model in two-
dimensional hierarchical lattices: the relevance criterion is obtained, again in accordance with the Harris-Luck
criterion.
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I. INTRODUCTION

The investigation of systems displaying inhomogeneous
or disordered interactions is an active field of research �1,2�.
From the experimental point of view, many of the materials
found in nature come with impurities; also, modern tech-
niques are able to build materials with controlled composi-
tion, such that two or more different atoms are combined in
a given order. Theoretically, one may be concerned with pos-
sible changes on the critical behavior of systems, with the
introduction of random disorder or inhomogeneuos deter-
ministic interactions, when compared to their homogeneous
counterpart �1�. For quenched random disorder, the Harris
criterion �3� states that, if the pure-system’s specific-heat ex-
ponent, �, is positive �negative�, the critical behavior of the
disordered model is diffferent from �the same as for� the pure
model.

The discovery of quasicrystals �4� has motivated intense
research on the behavior of models with interactions follow-
ing aperiodic sequences �2�: numerical �5� as well as analyti-
cal results �6,7� have been obtained. Many works concen-
trated on classical models, like Ising and Potts �8,9� ones, but
some attention has been drawn to quantum models in one
dimension �6,7,10–13�. In Ref. �14� the ground-state proper-
ties of a two-dimensional quantum model have been ana-
lyzed. However, no work has focused on the finite-
temperature critical behavior of quantum models in
dimensions two or above, to the best of our knowledge.

A convenient model to address the role played by quan-
tum effects and aperiodicity on critical phenomena is the
anisotropic Heisenberg one, with interactions following ape-
riodic and deterministic sequences. On the other hand, the

way these sequences are constructed and the idea behind
renormalization-group calculations make hierarchical lattices
a natural choice for the study �15–17�. Therefore in this work
we treat the anisotropic ferromagnetic Heisenberg model on
four different hierarchical lattices, with different Hausdorff
fractal dimenions. Three different aperiodic sequences are
treated, corresponding to bounded and unbounded fluctua-
tions. We will study here mainly the relevance of the intro-
duction of aperiodicity, in the renormalization-group sense.
This aspect is generally addressed by the so-called Harris-
Luck criterion �18�. According to this criterion, the relevance
of a given aperiodic sequence is connected to the crossover
exponent, �, given by �3,18�

� = 1 − da�0�1 − �� , �1�

where da is the dimension the aperiodic sequence acts on, �0
is the correlation length’s critical exponent of the pure
model, and � is the fluctuation exponent. This exponent is
defined through g�N�, where g is the fluctuation in the
number of a given letter of the sequence �below, we discuss
this point further�. For ��0, the critical behavior of the
aperiodic and uniform models are in different universality
classes. For ��0, both aperiodic and uniform models have
the same set of critical exponents. For the marginal case,
�=0, critical exponents depend on the ratio between the two
interaction constants �19,20�; we will not discuss this case
further. Our choices of hierarchical lattices and aperiodic se-
quences allow for values of � greater or smaller than zero, as
well as for different fractal dimensions of the lattice. The
aperiodicity is chosen such that da=1 in all cases we study.

This work is organized as follows. In the next section we
review some basic concepts of aperiodic sequences, which
will be important to our work. In Sec. III we define the
model and outline the real-space renormalization-group ap-*nsbranco@fisica.ufsc.br
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proach we use and in Sec. IV we present our results. In Sec.
V we discuss and summarize the results.

II. APERIODIC SEQUENCES

The aperiodic sequences used in this work are obtained by
the iteration of substitutuon rules working on an alphabet.
Each letter of the alphabet is replaced by a sequence of let-
ters and words are formed at each stage. We will be con-
cerned with a two-letter alphabet, A and B, and the usual
convention is that the initial word is A. More specifically, we
will study the following aperiodic sequences.

�i� A→AB; B→AA, i.e., from a given word of the se-
quence, the next word is obtained by substituting AB for
every letter A and AA for every letter B in the previous word.
The first stages of this sequence are A→AB→ABAA
→ABAAABAB→¯. This is the so-called period-doubling
sequence.

�ii� A→ABB; B→AAA. The first stages of this sequence
are A→ABB→ABBAAAAAA→¯.

�iii� A→AAB; B→AAA. In this case, the first words of
the sequence are A→AAB→AABAABAAA→¯.

The geometrical characteristics of these sequences are ob-
tained from the substitution matrix M, which connects the
number of letters A and B after one application of the itera-
tion rule, namely

�NA
�n+1�

NB
�n+1� � = M�NA

�n�

NB
�n� � . �2�

Therefore after n iterations the total number of letters in the
word, N�n�, is given by: N�n��NA

�n�+NB
�n�=MnN�0�, where NA

�n�

and NB
�n� are the number of letters A and B after n iterations,

respectively, and NA
�0�=1 and NB

�0�=0 for the initial word.
The substitution matrices for the three aperiodic se-

quences defined above are

�i� �i� M= � 1
1

2
0 �;

�ii� M= � 1
2

3
0 �;

�iii� M= � 2
1

3
0 �.

The total number of letters grows exponentially with the
number of iterations n:

N � 	1
n, n → 
 , �3�

where N� limn→
 N�n� and 	1 is the greater eigenvalue of
M. For the three sequences studied in this work, this expo-
nential growth is valid for all n and 	1=2 for sequence �i�
and 	1=3 for sequences �ii� and �iii�. One can define the
fluctuation in a given letter, say A, as g�n�=NA

�n�− pAN�n�,
where pA is the fraction of letters A in the infinite word, i.e.,
after n applications of the iteration rules, with n→
. The
fractions pA and pB are proportional to the first and second
entries, respectively, of the eigenvector corresponding to the
greater eigenvalue. It is possible to show that

g � 	2
n, n → 
 , �4�

where g� limn→
 g�n� and 	2 is the smaller eigenvalue of
M. Therefore using Eqs. �3� and �4�, one can show that

g � N�, � =
ln		2	
ln 	1

. �5�

The exponent � is crucial for the crossover exponent, as
outlined in the previous section. Its value is w=0, ln�2�/ln�3�,
and 0 for sequences �i�, �ii�, and �iii�, respectively, as can be
easily calculated from their substitution matrices. We will
discuss the results for the crossover exponent in Sec. IV.

III. MODEL AND FORMALISM

The reduced Hamiltonian of the anisotropic Heisenberg
model is given by

− �H = 

�i,j�

Kij��1 − ����i
x� j

x + �i
y� j

y� + �i
z� j

z� , �6�

where �=1 /kBT, kB being the Boltzmann constant and T the
temperature, �i

� is the component � of a spin-1/2 Pauli ma-
trix on site i, 0�1 ��=0 corresponds to the isotropic
Heisenberg model and �=1 to the Ising model�, the sum is
over all first-neighbor bonds on a hierarchical lattice and the
exchange constants Kij =�Jij follow an aperiodic sequence in
a given direction of the lattice. See Figs. 1 and 2 for ex-
amples of hierarchical lattices with b=2 and 3, respectively:
these lattices are built of bd−1 bonds connected in parallel,
each one consisting of b bonds connected in series, where d
is the fractal dimension of the lattice. In this work, we have
treated lattices with d=2 and 3.

We use a real-space renormalization-group approach; a
partial trace is taken over internal spins on suitable finite
lattices and a renormalized Hamiltonian is obtained, namely

e−��H�� = expK12� ��1 − �����1
x�2

x + �1
y�2

y� + �1
z�2

z��

� Tr��e
−�H, �7�

where K12� =KA� in Figs. 1�a� and 2�a� and K12� =KB� in Figs.
1�b� and 2�b�, Tr�� is a partial trace, taken over all spins in
Figs. 1 and 2, except �1 and �2, and �H is the reduced
Hamiltonian of the cell on the left-hand sides of Figs. 1�a�

. . . . . . . . . .
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FIG. 1. Hierarchical lattice with b=2, suitable for the study of
the period-doubling sequence �sequence �i�; see text�. We show the
renormalization for the coupling constant KA �part �a�� and for the
coupling constant KB �part �b��. Note that the construction of the
hierarchical lattice is made in the reverse order of the
renormalization-group procedure.
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and 1�b� and 2�a� and 2�b�. The method to calculate the
partial trace in Eq. �7� for quantum systems was introduced
in Ref. �21� and an important simplification was proposed in
Ref. �22�, where the whole process is explained in detail.
This method has been successfully applied in the study of
ferromagnetic, antiferromagnetic, and spin-glass quantum
models. The formalism is specially suitable to obtain multi-
dimensional phase diagrams and qualitative results, indicat-
ing universality classes and possible crossover phenomena. It
is worth mentioning that, although � is initially uniform and
the aperiodicity acts only on the interaction parameter K,
after the first iteration of the renormalization group the an-
isotropy is no longer the same for every bond. This fact has
to be taken into account when deriving the recursion rela-
tions. We refer the reader to Refs. �21� and �22� for details.

IV. RESULTS AND DISCUSSION

Some features are common to all three sequences: the
isotropic Heisenberg model ��=0� is an invariant subspace,
in the renormalization-group sense. The same applies for the
Ising model ��=1�. The reason is that the introduction of
exchange constants with different values does not change the
symmetry of these two models. Therefore the flow will not
leave the corresponding subspaces. Moreover, the critical be-
havior for 0���1 will be determined by the stability of the
Ising-model nontrivial fixed points, i.e., the flow for any ini-
tial value of � in that range is toward the �=1 subspace. The
Ising model with aperiodic interactions has already been
treated and our results for �=1 agree with those in Ref. �8�.
Particularly, the stability of the uniform fixed points, with
respect to the introduction of aperiodicity, is in accordance
with the Harri-Luck criterion. Therefore from now on we
will restrict ourselves to the isotropic Heisenberg model sub-
space.

In the renormalization-group framework, the stability of
fixed points is given by the eigenvalues of the matrix of the
linearized renormalization-group equations �LRGE� �1�.
Since the relevant fixed points �filled squares in Fig. 3� are
the nontrivial ones, one of these eigenvalues is always
greater than one and corresponds to the flux along the uni-
form subspace �traced lines in Fig. 3�. In this figure we show

the qualitative picture we obtain for irrelevant �Fig. 3�a�� and
relevant �Fig. 3�b�� aperiodic sequences for d=3. The uni-
form model corresponds to the straight line at 45°, where
KA=KB; the fixed point is always unstable along this line.
The relevance of the aperiodicity is given by the stability
along the other direction �continuous lines leaving the fixed
points in Fig. 3�: in Fig.3�a�, the aperiodicity does not change
the critical behavior, compared to the uniform model, while
in Fig. 3�b� a new universality class emerges when aperiod-
icity is introduced. Note that the phase diagrams for lattices
with d=2 are qualitatively different from the ones in Fig. 3:
the nontrivial fixed points are at zero temperature �K=
�
and, therefore, the “aperiodic” direction is not physically ac-
cessible in these cases. Nevertheless, the relevance of the
aperiodicity is correctly described by the renormalization-
group formalism, as we will see below.

A technical point is worth mentioning here. For all se-
quences we treat in this work the structure of the matrix of
the LRGE, evaluated at the uniform fixed point, K��KA

�

=KB
� , is

��
�KA�

�KA
�

K�

� �KA�

�KB
�

K�

� �KB�

�KA
�

K�

� �KB�

�KB
�

K�

= 0� .

Since

	�KB�/�KA	K� = 	�KA�/�KA	K� + 	�KA�/�KB	K�, �8�

the eigenvalues of the above matrix are

�1 = � �KB�

�KA
�

K�

; �2 = − � �KA�

�KB
�

K�

. �9�

The former corresponds to the uniform model, as discussed
previously, and therefore is always greater than 1. The abso-
lute value of the latter eigenvalue determines the relevance
of the aperiodicity.

For classical models, like the Ising and Potts ones �8�, the
matrix of the LRGE is proportional to the transpose of the
substitution matrix �see Eq. �2� above�, MT. This property
still holds true for quantum models and for aperiodic se-
quences such that the hierarchical lattices which renormal-
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FIG. 2. Hierarchical lattice with b=3, suitable for the study of
sequences �ii� and �iii� �see text�. We show the renormalization for
the coupling constant KA �part �a��, where Ki=KB for sequence �ii�
and Ki=KA for sequence �iii�, and for the coupling constant KB �part
�b��.

K K

KK
A A

BB
(b)(a)

FIG. 3. Qualitative phase diagram for hierarchical lattices with
d=3. �a� Renormalization-group flux for irrelevant aperiodic se-
quences. �b� Renormalization-group flux for relevant aperiodic se-
quences. The straight lines at 45° represent the uniform model,
KA=KB, and the fixed point is relevant along this direction.
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izes into KA� is symmetric with respect to the exchange of the
iterations KA and KB, as in Fig. 1�a�. This brings an important
simplification for the calculation of the former matrix, since
the proportionality factor can be obtained from the recursion
relation for the uniform model, i.e., from the renormalization
of KB. Then, one can obtain the other two elements,
	�KA� /�KA	K� and 	�KA� /�KB	K�, from the substitution matrix,
with no need to work out the recursion relation for the ape-
riodic model �this relation involves bonds with different val-
ues, which may make it cumbersome to be calculated�. Note
that, while the proportionality between the matrix of the
LRGE and MT is always true for classical models, it fails for
quantum models when the lattice is not symmetric with re-
spect to the exchange of the iterations KA and KB �like the
one in Fig. 2�a�, for example�.

For the hierarchical lattices with b=3, we have to resort to
the Migdal-Kadanoff approximation, since the number of
sites involved in the renormalization is rather large. This ap-
proximation is equivalent to treating the cell “by pieces” i.e.,
to renormalizating first the b bond in series and then com-
bining the bd−1 renormalized bonds in parallel. An alternative
�and more precise, since commutation aspects are taken into
account at the cell level� procedure is to renormalize the
whole cell. This point is extensively discussed in Ref. �21�,
where it is shown that treating the cell “by pieces” gives
good qualitative results for ferromagnetic quantum models,
when compared to renormalizing the whole cell. The com-
parison between these two procedures has also been made
for antiferromagnetic quantum models �23� and again the
agreement is quite good �note, however, that for models such
that frustration effects are present, the two approaches give
different qualitative results �24��. In this work, we have ap-
plied the two procedures outlined above for b=2; the quali-
tative �and sometimes even the quantitative� agreement is
excellent and puts the Migdal-Kadanoff approximation made
for b=3 on a firmer basis.

The hierarchical lattices we treat here are those with b
=2, d=2 and 3 �see Fig. 1�, and b=3, d=2 and 3 �see Fig. 2�.
The corresponding results are as follows.

�a� b=2, d=2: In this case, the results are the same treat-
ing the cell as a whole or within the Migdal-Kadanoff ap-
proximation. The critical temperature, Tc, and the
correlation-length’s critical exponent, �, are known exactly
for the two-dimensional uniform model, namely Tc=0 �25�
and �=
. We obtain these exact results with our procedure.
Therefore according to the Harris-Luck criterion, Eq. �1�, the
crossover exponent is negative for any sequence. In fact, the
eigenvalues for this model are �1=1 and �2=−1 /2. The
former corresponds to the pure-model’s critical behavior; the
second determines the irrelevance of the aperiodicity, as pre-
dicted by the Harris-Luck criterion. The negative sign of the
second largest eigenvalue is a signature of aperiodic systems
�26�.

�b� b=2, d=3: In this case, we have �1� renormalized the
cell as a whole and �2� used the Migdal-Kadanoff approxi-
mation, as in the last item. In both procedures we obtain a
finite critical temperature �Tc=2.70 for the former and
Tc=2.91 for the latter�, as expected. The approximated
value for the critical exponent � is �1� 1.511 and �2� 1.398.
Since �=0 for the period-doubling sequence, the crossover

exponent is negative in both approximations, namely, �1�
�=−0.511 and �2� �=−0.398. Therefore we expect the
aperiodicity to be irrelevant. The eigenvalues of the matrices
of the LRGE are �1� �1=1.582; �2=−0.791 and �2�
�1=1.642; �2=−0.821. As expected, in both cases the ape-
riodicity is irrelevant and the smaller eigenvalue is nagative,
as commented above.

�c� b=3, d=2: Again, Tc=0 and �=
 for the uniform
model. Our procedure �see Fig. 2� obtains the correct critical
temperature but the value obtained for � is an excellent ap-
proximation but not the exact one, namely �=8.494. As dis-
cussed above, we have to resort to the Migdal-Kadanoff pro-
cedure, in this case, but in view of the comparison made in
�a� and �b�, we believe that the physical behavior is correctly
described by this approximation. For this lattice, we have
studied sequences �ii� and �iii� �defined in Sec. II�. For se-
quence �ii�, the wandering exponent is �=ln�2� / ln�3� and
the crossover exponent is �=−2.135, i.e., the aperiodicity is
irrelevant, according to the Harris-Luck criterion; the situa-
tion is analogous for sequence �iii�, where �=0 and then
�=−7.494: the aperiodicity defined by this sequence is also
irrelevant. For the eigenvalues of the substitutional matrices
we obtain: �ii� �1=0.879; �2=−0.654 and �iii� �1=0.879;
�2=−0.224. Therefore the aperiodicity is irrelevant for both
cases, as predicted by the Harris-Luck criterion. Note that
since the relevant fixed point is at KA

� =KB
� =
, the value

�1=0.879 means that this point is unstable, in the
renormalization-group sense.

�d� b=3, d=3: We have used the Migdal-Kadanoff ap-
proximation and obtained Tc=1.92 and �=1.551 for the uni-
form case. Recalling the values for the wandering exponents
for sequences �ii� and �iii� �see �c� above�, the crossover
exponents are given by �=0.427 and −0.551, respectively.
The eigenvalues of the matrix of the LRGE are �ii�
�1=2.030; �2=−1.363 and �iii� �1=2.030; �2=−0.667.
Therefore sequence �ii� is relevant and sequence �iii� is irrel-
evant, again in accordance with the Harris-Luck criterion.
For the relevant case, a fixed cycle of period two emerges, as
already found in Ref. �26�. The location of this stable two-
cycle is �KA

� =0.417,KB
� =3.90�; �KA

� =1.85,KB
� =0.325�. The

eigenvalues of the LRGE associated with this double itera-
tion are �1=3.89; �2=0.250. The specific heat critical expo-
nent associated with the aperiodic fixed cycle, �a, is calcu-
lated from the relation

�a = 2 − d
ln b2

ln �1
,

where d is the fractal dimension of the hierarchical lattice
and b is the scaling parameter associated with one iteration.
In this case, we obtain �a=−2.855, which is smaller than its
counterpart for the uniform model �u=−2.653 �this value can
be obtained from the value of �, quoted above, and the rela-
tion �u=2−d��.

We have also studied the classical isotropic Heisenberg
model at low temperatures. Only in this limit this model is
closed upon application of the renormalization-group trans-
formation. Our procedure is appropriate to the study of two-
dimensional systems, since only in these cases the nontrivial
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fixed point is at zero temperature. The renormalized param-
eters are �27�

1

KA�
=

1

b
� n1

KA
+

n2

KB
�;

1

KB�
=

1

b
� n3

KA
+

n4

KB
� . �10�

These equations assume an aperiodic sequence built by the
substitution rules

A → AA ¯ A

n1

B ¯ B

n2

;

B → AA ¯ A

n3

B ¯ B

n4

. �11�

Note that since the model is classical, the order of the inter-
actions in Eqs. �11� is not relevant and the proportionality
between the matrix of the LRGE and MT holds in this case.
It is easy to show that, for KA

� =KB
� =
, the matrix of the

LRGE is given by

�bn1/�n1 + n2�2 bn2/�n1 + n2�2

bn3/�n3 + n4�2 bn4/�n3 + n4�2 � . �12�

Since n1+n2=n3+n4=b and n4=0 in the sequences studied
here, the eigenvalues are 	1=n3 /b=1 and 	2=−n2 /b, with
		2	�1. So, the eigenvalues of the substutitional matrix are
�1=b and �2=−n2, and the wandering exponent is given by

� =
ln n2

ln b
� 1. �13�

Note that the value of 	1 implies that �=
 and, since �
�1, any aperiodic sequence with n1+n2=n3+n4=b will be

irrelevant for the classical isotropic Heisenberg model in two
dimensions. This result is supported by the formalisms we
apply in this work, since 		2	�1.

V. SUMMARY

Within a real-space renormalization-group framework, we
have studied the quantum anisotropic Heisenbeg model with
interactions following three different aperiodic sequences, on
four different hierarchical lattices. We obtain the exact result
Tc=0 for two-dimensional lattices, while our evaluation of
Tc is always finite when d=3. In accordance with symmetry
arguments, the isotropic Heisenberg-model subspace is an
invariant one and the flow of the anisotropic models is al-
ways toward the Ising subspace. Our procedure allows for
the calculation of the stability of the homogeneous fixed
points, which agrees with the Harris-Luck criterion in all
studied cases. For the relevant sequence, we established the
presence of a stable fixed cycle of period two and calculated
its specific heat critical exponent. We also applied a low-
temperature renormalization-group calculation to the isotro-
pic classical Heisenberg model in two-dimensional lattices:
the results we obtain are exact on the respective hierarchical
lattices and on this range of temperatures. We obtain that, on
two-dimensional hierarchical lattices, all aperiodic sequences
are irrelevant, in agreement with the Harris-Luck criterion.
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